SELECTIVE REACTIONS OF THIOLATE ANIONS WITH 4-HYDROXY-E-2-ALKENOIC ESTERS OR 4-METHANESULFONYLOXY-E-2-ALKENOIC ESTERS. SYNTHESIS OF 2-ALKEN-4-OLIDES ($\Delta^{\alpha,\beta}$ -BUTENOLIDES) AND E,E-2,4-ALKADIENOIC ESTERS

Rikuhei TANIKAGA, * Yoshihito NOZAKI, Kazuhiko TANAKA, and Aritsune KAJI Department of Chemistry, Faculty of Science, Kyoto University Sakyo-ku, Kyoto 606

Methyl 4-hydroxy-E-2-alkenoates prepared from aldehydes in one step, undergo the Michael reactions with thiolate anions to give 4-alkanolide derivatives, which are converted into 2-alken-4-olides. Methyl 4-methanesulfonyloxy-E-2-alkenoates undergo the substitution reactions, and subsequent treatments give methyl E,E-2,4-alkadienoates.

The skeletons of 4-hydroxy-E-2-alkenoic esters (1), 2-alken-4-olides ($\Delta^{\alpha,\beta}$ butenolides) (2), and E,E-2,4-alkadienoic esters (3) are widely found as a moiety in many naturally occurring compounds, and there are a variety of methods available for preparing these compounds. 1-3) We now present our results on simple synthesis of 2 and 3 through the selective reactions of thiolate anions with 1 and 4-methanesulfonyloxy-E-2-alkenoic esters (4).

We previously reported that the condensation of ethyl 2-phenylsulfinylacetate and aldehydes (5) in the presence of a catalytic amount of piperidine produced ethyl 2-phenylsulfinyl-2-alkylideneacetates. 4) On the other hand treatment of methyl 2-(p-chlorophenylsulfinyl)acetate (6) and 5^{5,6)} with excess piperidine gave 1 in high yields, stereoselectively. 7,8) Interestingly the reaction of 1 with benzenethiolate anion lead to the formation of 3-phenylsulfenyl-4-alkanolides (7). Although 1 contains a hydroxy group at the 4-position, the Michael reaction occurs probably because a thiolate anion is a good nucleophile and a soft base. 9) The lactones (7) were quantitatively oxidized to the corresponding sulfones (8)which were converted into $\underline{2}$ in high yields by treatment with triethylamine. 10)

$$\begin{bmatrix} c_{6}^{H} c_{5}^{S} & c_{2}^{CH} c_{2}^{CH} c_{3} & c_{2}^{CH} c_{3} & c_{2}^{CH} c_{3} & c_{2}^{CH} c_{3} & c_{2}^{CH} c_{3}^{CH} c_{3}^{C$$

In a typical procedure, a solution of butanal $(\underline{5a}; R^1=C_2H_5, R^2=H)$ (18 mmol), $\underline{6}$ (15 mmol), and piperidine (18 mmol) in acetonitrile was stirred at room temperature for 3 h. The ester ($\underline{1a}$) was obtained by distillation. A solution of $\underline{1a}$ (12.5 mmol), benzenethiol (30 mmol), and piperidine (13 mmol) in acetonitrile was refluxed for 2 h. The lactone ($\underline{7a}$) was isolated by column chromatography on silica gel. The direct treatment of $\underline{5a}$ with $\underline{6}$ in the presence of piperidine and benzenethiol also produced $\underline{7a}$ in reasonable yield (60 %). After oxidation to the corresponding sulfone ($\underline{8a}$) with $\underline{H_2O_2}$ -acetic acid, $\underline{2a}$ was obtained by treating $\underline{8a}$ (10 mmol) with triethylamine (20 mmol) in chloroform at room temperature for 12 h. 11) The other results are shown in the following Table.

Table.	Synthesis	of 1	7	and	2
rante.	SAUCHESTS	O1 1,	,,	anu	4

	R ¹	R ²	Isolat <u>1</u>	ed Yiel	ds (%)
<u>a</u>	с ₂ н ₅	Н	85	81	77
<u>b</u>	n-C ₅ H ₁₁	Н	76	84	74
<u>c</u>	n-C ₆ H ₁₃	Н	80	81	76
<u>d</u>	CH ₃	CH ₃	64 ^{a)}	85	93
<u>e</u>	n-C ₄ H ₉	с ₂ н ₅	73 ^{b)}	73	85
<u>f</u>	-сн ₂ сн=сн	(CH ₂) ₂ -	72 ^{a)}	85	68

a) Reflux for 2 h. b) Reflux for 10 h.

On the other hand methyl 4-methanesulfonyloxy-E-2-alkenoates $(\underline{4})$ prepared from 1 and methanesulfonyl chloride, 13 did not undergo the Michael reaction with

benzenethiolate anion, but did the S_N^2 reaction to afford methyl 4-phenylsufenyl-E-2-alkenoates $(\underline{9})$. $^{14)}$ Oxidation to the corresponding sulfoxides and pyrolysis lead to the formation of $\underline{3}$ in a high degree of stereoselectivity.

$$R^3$$
OMS
 $CO_2^{CH}3$
 Ars
 $CO_2^{CH}3$
 $MCPBA$
 Ars
 $CO_2^{CH}3$
 Ars
 OMS
 O

In a typical procedure a solution of $\underline{4a}$ (R³=CH₃)(10 mmol) and sodium p-chlorobenzenethiolate (10 mmol) in tetrahydrofuran was stirred at -20°C for 1.5 h, and $\underline{10a}$ was isolated in 83% yield. After oxidation with m-chloroperbenzoic acid, refluxing in xylene for 2 h yielded $\underline{3a}$ in 63% yield (E-4/Z-4 = 93/7). Similarly, $\underline{3b}$ (R³=n-C₄H₉) was obtained from $\underline{4b}$ in 52% yield (E-4/Z-4 = 96/4). Treatment of $\underline{4a}$ with benzenethiol and piperidine in acetonitrile gave $\underline{9a}$ in 52% yield, but pyrolysis of the sulfoxide afforded $\underline{3a}$ in poor yield.

The present synthetic methods of $\underline{1}$ and $\underline{2}$ have the following advantages; (1) the reagents are readily available, (2) the procedures are simple, and (3) the reaction conditions are mild.

This research was supported by a grant-in-aid for fundamental research in chemistry, administered by the Japan Society for the Promotion of Science.

References

- 1) B. M. Trost and J. H. Rigby, J. Org. Chem., 43, 2938 (1978).
- 2) P. Brownbridge, E. Egert, P. G. Hunt, O. Kennard, and S. Warren, J. Chem. Soc., Perkin Trans. I, <u>1981</u>, 2751, and references therein.
- 3) N. Ono, H. Miyake, Y. Tanabe, K. Tanaka, and A. Kaji, Chem. Lett., <u>1980</u>, 1365, and references therein.
- 4) R. Tanikaga, M. Nishida, N. Ono, and A. Kaji, Chem. Lett., 1980, 781.
- 5) The use of methyl 2-phenylsulfinylacetate caused the yields of $\underline{1}$ to lower because of the competitive self-condensation of $\underline{5}$.
- 6) Ketones failed to undergo the condensation with 6.

- 7) S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi, and H. Uda, J. Chem. Soc., Perkin Trans. I, 1979, 570.
- 8) Q. B. Cass, A. A. Jaxa-Chamiec, and P. G. Sammes, J. Chem. Soc., Chem. Commun., 1981, 1248.
- 9) The anion from nitromethane and 1,5-diazabicyclo[5.4.0]undecene-5 underwent the Michael reaction with la to give 3-nitromethyl-4-hexanolide in 30% yield.
- 10) Pyrolysis of the sulfoxide derived from 7a gave 2a and 3-hexen-4-olide in 64% and 11% yields, respectively.
- 11) <u>la</u>: colorless liquid; bp 81-83°C/0.3 mmHg; ¹H-NMR (CCl₄) δ 0.93 (t, 3H, J=7 Hz), 1.4-1.8 (m, 2H), 3.4 (br s, 1H), 3.65 (s, 3H), 4.0-4.2 (m, 1H), 5.86 (dd, 1H, J=16, 1 Hz), 6.84 (dd, 1H, J= 16, 4 Hz); IR (neat) 1720 cm⁻¹.
 - $\underline{7a}$: colorless liquid; ${}^{1}\text{H-NMR}$ (CCl₄) δ 0.95 (t, 3H, J=7 Hz), 1.5-1.8 (m, 2H), 2.40 (dd, 1H, J=18, 7.5 Hz), 2.83 (dd, 1H, J=18, 7.5 Hz), 3.3-3.7 (m, 1H), 3.9-4.3 (m, 1H), 7.1-7.4 (m, 5H); IR (neat) 1770 cm⁻¹; MS (20 eV) m/e 222 (M⁺).
 - <u>2a</u>: colorless liquid; bp 100-105°C/20 mmHg (bp 92-94°C/10 mmHg¹⁶⁾).
- 12) 2a-d are known compounds. 16)
 - <u>2e</u>: colorless liquid; bp 97-98°C/2 mmHg; 1 H-NMR (CCl $_{4}$) δ 0.7-1.0 (m, 6H), 1.0-1.5 (m, 4H), 1.6-2.0 (m, 4H), 6.00 (d, 1H, J=5.5 Hz), 7.31 (d, 1H, J=5.5 Hz), IR (neat) 1745 cm $^{-1}$; MS (20 eV) m/e 168 (M $^{+}$).
 - 2f: colorless solid; mp 66-67°C; 1 H-NMR (CCl₄) δ 1.7-2.6 (m, 6H), 5.5-5.9 (m, 2H), 5.99 (d, 1H, J=5.5 Hz), 7.50 (d, 1H, J=5.5 Hz); IR (KBr) 1750 cm⁻¹; MS (20 eV) m/e 150 (M⁺).
- 13) Treatment of $\underline{1d}$ - \underline{f} with methanesulfonyl chloride yielded methyl alkadienoates besides methanesulfonic esters.
- 14) The compound $\frac{4a}{1}$ underwent the Michael reaction with LiCH(SC₆H₅) (CO₂C₂H₅), while it did the S_N2' reaction with n-C₄H₉CuBF₃. These results will be reported in future.
- 15) The structures of $\underline{3a}$ and $\underline{3b}$ were confirmed by comparison with an authentic sample or on the basis of the reported data of 2,4-decadienoic esters. 17)
- 16) A. Nobuhara, Agric. Biol. Chem., 11, 1745 (1970).
- 17) G. Ohloff and M. Pawlak, Helv. Chim. Acta, 56, 1176 (1973).

(Received August 16, 1982)